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78,13 a-Bistriethylsiloxy-1f,20,10p-trihydroxy-9-oxo0-4(20),
11-taxadiene (2), derived from 10-deacetylbaccatin III via
degradation of oxetane ring, was conveniently converted into 7-
triethylsilylbaccatin III (1) by way of a new and effective method
for constructing oxetane ring. Thus, the synthesis of a precursor
of taxol from novel taxoid 2 was accomplished.

A new synthetic strategy of taxol and a stereoselective
synthesis of optically active 8-membered ring enone that
corresponds to B ring system of taxol were described in our
previous communications. 12 Via allylation of a derivative of the
above 8 membered ring compound and successive intramolecular
aldol reaction, the synthesis of AB ring system of taxol was also
achieved.3:4 At the same time, retrosynthetic and synthetic
studies on taxol and novel taxol derivatives using 10-
deacetylbaccatin III were planned.5 We would like to report
herein a new and effective method for the synthesis of 7-
triethylsilylbaccatin III (1),6 a precursor of taxol, from 78,130
bistriethylsiloxy-18,2a,108-trihydroxy-9-0x0-4(20),11-taxadiene
(2) which was derived from 10-deacetylbaccatin III via
degradation of oxetane ring.
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R! = PACH(NHBZ)CH(OH)CO, R? = H; taxol 2
R'=H, R?=TES; 1 Scheme 1.

Taxoids such as taxine and taxinine families, taxusin,
brevifoliol, etc., have exo double bonds on their C rings and it is
well known that, in biosynthesis, D rings of taxol and related
compounds are formed by way of oxygenation of the exo
olefins.7 In order to develop a new method for the construction
of oxetane rings onto the C rings,8 the synthesis of new taxoid 2
from 10-deacetylbaccatin III was tried first (Scheme 2).

7,13-Bistriethylsilylbaccatin IIT (3) was prepared from 10-
deacetylbaccatin III according to literature procedures.52) A C1-
C2 carbonate 4 was synthesized from 3 by reductive cleavage of
C-2 benzoate with Red-Al9 followed by carbonylation using
triphosgene.10 When 4 was treated with SnCl4 in CH2Cly at 0
°C, the oxetane-opening reaction took place to give desired kinetic
product 5 as well as undesired thermodynamic product 6 in a
ratio of 4 / 6.11 After screening several acidic reaction
conditions, the diols were obtained in quantitative yields with
good selectivity (5 /6 = 8 / 2) when the reaction was carried out
in CH2Cl2 at 0 °C using TiCl4. Protection of the diol 5 with
thiocarbonyl-diimidazole afforded the corresponding cyclic
thionocarbonate 7 in excellent yield. Successive Corey-Winter
deoxygenation of the thionocarbonate 7 with trimethylphosphite

afforded 8 with exo double bond in nearly quantitative yield.12

Selective deoxygenation at C-5 position of the allylic acetate 8
with formic acid-triethylamine and Pd2(dba)3-CHCI3 proceeded
smoothly to produce 9 in 85% yield.13 Finally, saponification of
the acetyl carbonate 9 with aqueous NaOH afforded triol 2 and
diol 10 in 63% and 30% yields, respectively. Thus, the novel
taxoid 2 was synthesized from 10-deacetylbaccatin III in ca. 35%
overall yield via degradation of the oxetane ring.
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a) TESC], pyridine, r.t. (98%); AcCl, pyridine, -10 °C (83%);

b) TESCI, imidazole, DMF, r.t. (85%); c) Red-Al, THF, 0 °C (100%);
triphosgene, pyridine, CH,Cl,, -78 °C to 0 °C (87%); d) TiCl,, CH,Cl,,
0 °C (5; 80%, 6; 20%); ¢) thiocarbonyldiimidazole, toluene, reflux (98%);
) (MeO)3P, 130 °C (97%); g) HCOOH, Et3N, Pdy(dba);-CHCl,, #n-BusP,
THF, 75 °C (85%); h) NaOH, H,0, MeOH, r.t. (2; 63%, 10; 30%);

i) NaOH, H,0, MeOH, 0 °C to r.t. (2; 54%, 10; 21%).

Scheme 2.
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Next, a new and effective method was developed for
constructing oxetane ring on the above novel taxoid 2 (Scheme
3). Successive treatment of the triol 2 with triphosgene and acetic
anhydride gave acetyl carbonate 9 in high yield. However, allylic
oxygenation at C-5 position of 9 using SeO2 with or without
TBHP did not take place at all while PCC oxidation gave a
mixture of undesired oxygenated products. On the other hand,
allylic bromides 11 and 12 were unexpectedly produced in 62%
and 15% yields, respectively, when the oxygenation of 9 was
carried out with exccess amounts of CuBr and t-BuOOCOPh
under the condition of allylic oxyacylation of olefins.14 Further,
on treating the allylic bromide 11 with CuBr at 55 °C in CH3CN,
amixture of 11 and 12 was obtained in 95% yield (11; 25%, 12;
70%). Osmylation of thus formed allylic bromide 12 with
pyridine gave dihydroxy bromide 13 in 92% yield as a single
stereoisomer. The desired oxetanol 14 was obtained in good
yield when the dihydroxy bromide 13 was treated with DBU at
50 °C in toluene.1> Acetylation of the tertiary alcohol 14 using
acetic anhydride in pyridine gave the corresponding acetate 4.
The above experiments supported that the relative stereo-
chemistries of 12-14 are as described in scheme 3. 7,13-
Bistriethylsilylbaccatin IIT (3) was synthesized in high yield b
benzoylation at C-2 position of C1-C2 carbonate 4.5)’6‘1),63),53
Desilylation of 3 and successive monosilylation of the triol
afforded 7-triethylsilylbaccatin IIl (1) in good yield. It is noted
that the synthesis of precursor of taxol was successfully
accomplished from the novel taxoid 2 in ca. 25% overall yield by
way of a new and effective method of constructing oxetane ring.
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a) triphosgene, pyridine, CH,Cl,, -78 °C to -23 "C (96%); Ac,0, pyridine,
DMAP, r.t. (88%); b) CuBr, t-BuOOCOPh, CH,CN, -23 °C (11; 62%,

12; 15%}; ¢) CuBr, CH;CN, 55 °C (11; 25%, 12; 70%); d) OsOy, pyridine,
THF, 1.t. (92%); €) DBU, pyridine, toluene, 50 “C (77% based on 52%
conversion); f) Ac,0, pyridine, DMAP, r.t. (91%); g) PhLi, THF, -78 °C
(94%); h) TBAF, THF, r.t. (81%); TESCI, imidazole, DMF, r.t. (87%).

Scheme 3.

Chemistry Letters 1996

Thus, chemical pathways of converting 10-deacetylbaccatin IIT
to a variety of novel taxoids, useful synthetic intermediates of
taxol, were established.
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