New and Effective Synthesis of 7-Triethylsilylbaccatin III from 7β ,13 α -Bistriethylsiloxy- 1β ,2 α ,10 β -trihydroxy-9-oxo-4(20),11-taxadiene Isamu Shiina, Masahiro Saitoh, Koji Nishimura, Katsuyuki Saitoh, and Teruaki Mukaiyama Department of Applied Chemistry, Faculty of Science, Science University of Tokyo, Kagurazaka, Shinjuku-ku, Tokyo 162 (Received November 24, 1995) 7β ,13 α -Bistriethylsiloxy-1 β ,2 α ,10 β -trihydroxy-9-oxo-4(20), 11-taxadiene (2), derived from 10-deacetylbaccatin III *via* degradation of oxetane ring, was conveniently converted into 7-triethylsilylbaccatin III (1) by way of a new and effective method for constructing oxetane ring. Thus, the synthesis of a precursor of taxol from novel taxoid 2 was accomplished. A new synthetic strategy of taxol and a stereoselective synthesis of optically active 8-membered ring enone that corresponds to B ring system of taxol were described in our previous communications. 1,2 Via allylation of a derivative of the above 8 membered ring compound and successive intramolecular aldol reaction, the synthesis of AB ring system of taxol was also achieved. 3,4 At the same time, retrosynthetic and synthetic studies on taxol and novel taxol derivatives using 10-deacetylbaccatin III were planned. We would like to report herein a new and effective method for the synthesis of 7-triethylsilylbaccatin III (1), 6 a precursor of taxol, from $^{7}\beta$, $^{13}\alpha$ -bistriethylsiloxy- $^{1}\beta$, $^{2}\alpha$, $^{10}\beta$ -trihydroxy- 9 -oxo- $^{4}(^{20})$, 11 -taxadiene (2) which was derived from 10 -deacetylbaccatin III via degradation of oxetane ring. R^1 = PhCH(NHBz)CH(OH)CO, R^2 = H; taxol 2 R^1 = H, R^2 = TES; 1 Scheme 1. Taxoids such as taxine and taxinine families, taxusin, brevifoliol, etc., have exo double bonds on their C rings and it is well known that, in biosynthesis, D rings of taxol and related compounds are formed by way of oxygenation of the exo olefins. In order to develop a new method for the construction of oxetane rings onto the C rings, the synthesis of new taxoid 2 from 10-deacetylbaccatin III was tried first (Scheme 2). 7,13-Bistriethylsilylbaccatin III (3) was prepared from 10-deacetylbaccatin III according to literature procedures. 6a) A C1-C2 carbonate 4 was synthesized from 3 by reductive cleavage of C-2 benzoate with Red-Al,9 followed by carbonylation using triphosgene. 10 When 4 was treated with SnCl4 in CH₂Cl₂ at 0 °C, the oxetane-opening reaction took place to give desired kinetic product 5 as well as undesired thermodynamic product 6 in a ratio of 4 / 6. 11 After screening several acidic reaction conditions, the diols were obtained in quantitative yields with good selectivity (5 / 6 = 8 / 2) when the reaction was carried out in CH₂Cl₂ at 0 °C using TiCl₄. Protection of the diol 5 with thiocarbonyl-diimidazole afforded the corresponding cyclic thionocarbonate 7 in excellent yield. Successive Corey-Winter deoxygenation of the thionocarbonate 7 with trimethylphosphite afforded 8 with exo double bond in nearly quantitative yield. 12 Selective deoxygenation at C-5 position of the allylic acetate 8 with formic acid-triethylamine and Pd₂(dba)₃·CHCl₃ proceeded smoothly to produce 9 in 85% yield.¹³ Finally, saponification of the acetyl carbonate 9 with aqueous NaOH afforded triol 2 and diol 10 in 63% and 30% yields, respectively. Thus, the novel taxoid 2 was synthesized from 10-deacetylbaccatin III in ca. 35% overall yield via degradation of the oxetane ring. a) TESCl, pyridine, r.t. (98%); AcCl, pyridine, -10 °C (83%); b) TESCl, imidazole, DMF, r.t. (85%); c) Red-Al, THF, 0 °C (100%); triphosgene, pyridine, CH₂Cl₂, -78 °C to 0 °C (87%); d) TiCl₄, CH₂Cl₂, 0 °C (5; 80%, 6; 20%); e) thiocarbonyldiimidazole, toluene, reflux (98%); f) (MeO)₃P, 130 °C (97%); g) HCOOH, Et₃N, Pd₂(dba)₃·CHCl₃, n-Bu₃P, THF, 75 °C (85%); h) NaOH, H₂O, MeOH, r.t. (2; 63%, 10; 30%); i) NaOH, H₂O, MeOH, 0 °C to r.t. (2; 54%, 10; 21%). Scheme 2. 224 Chemistry Letters 1996 Next, a new and effective method was developed for constructing oxetane ring on the above novel taxoid 2 (Scheme 3). Successive treatment of the triol 2 with triphosgene and acetic anhydride gave acetyl carbonate 9 in high yield. However, allylic oxygenation at C-5 position of 9 using SeO2 with or without TBHP did not take place at all while PCC oxidation gave a mixture of undesired oxygenated products. On the other hand, allylic bromides 11 and 12 were unexpectedly produced in 62% and 15% yields, respectively, when the oxygenation of 9 was carried out with excess amounts of CuBr and t-BuOOCOPh under the condition of allylic oxyacylation of olefins. ¹⁴ Further, on treating the allylic bromide 11 with CuBr at 55 °C in CH₃CN, a mixture of 11 and 12 was obtained in 95% yield (11; 25%, 12; Osmylation of thus formed allylic bromide 12 with pyridine gave dihydroxy bromide 13 in 92% yield as a single stereoisomer. The desired oxetanol 14 was obtained in good yield when the dihydroxy bromide 13 was treated with DBU at 50 °C in toluene. 15 Acetylation of the tertiary alcohol 14 using acetic anhydride in pyridine gave the corresponding acetate 4. The above experiments supported that the relative stereochemistries of 12-14 are as described in scheme 3. Bistriethylsilylbaccatin III (3) was synthesized in high yield by benzoylation at C-2 position of C1-C2 carbonate 4.5),6d),6e),6f) Desilylation of 3 and successive monosilylation of the triol afforded 7-triethylsilylbaccatin III (1) in good yield. It is noted that the synthesis of precursor of taxol was successfully accomplished from the novel taxoid 2 in ca. 25% overall yield by way of a new and effective method of constructing oxetane ring. a) triphosgene, pyridine, CH₂Cl₂, -78 °C to -23 °C (96%); Ac₂O, pyridine, DMAP, r.t. (88%); b) CuBr, t-BuOOCOPh, CH₃CN, -23 °C (11; 62%, 12; 15%); c) CuBr, CH₃CN, 55 °C (11; 25%, 12; 70%); d) OsO₄, pyridine, THF, r.t. (92%); e) DBU, pyridine, toluene, 50 °C (77% based on 52% conversion); f) Ac₂O, pyridine, DMAP, r.t. (91%); g) PhLi, THF, -78 °C (94%); h) TBAF, THF, r.t. (81%); TESCl, imidazole, DMF, r.t. (87%). Scheme 3. Thus, chemical pathways of converting 10-deacetylbaccatin III to a variety of novel taxoids, useful synthetic intermediates of taxol, were established. ## References and Notes - T. Mukaiyama, I. Shiina, K. Sakata, T. Emura, K. Seto, and M. Saitoh, Chem. Lett., 1995, 179. I. Shiina, K. Uoto, N. Mori, T. Kosugi, and T. - Mukaiyama, Chem. Lett., 1995, 181. - T. Mukaiyama, I. Shiina, K. Kimura, Y. Akiyama, and H. Iwadare, Chem. Lett., 1995, 229. - I. Shiina, H. Iwadare, M. Saitoh, N. Ohkawa, T. Nishimura, and T. Mukaiyama, Chem. Lett., 1995, 781. - Previous retrosynthetic studies: a) K. C. Nicolaou, P. G. Nantermet, H. Ueno, and R. K. Guy, J. Chem. Soc., Chem. Commun., 1994, 295; b) K. C. Nicolaou, P. G. Nantermet, H. Ueno, R. K. Guy, E. A. Couladouros, and E. J. Sorensen, J. Am. Chem. Soc., 117, 624 (1995). See also c) R. A. Holton, H.-B. Kim, C. Somoza, F. See also c) R. A. Holton, H.-B. Kim, C. Liang, R. J. Biediger, P. D. Boatman, M. Shindo, C. C. Smith, S. Kim, H. Nadizadeh, Y. Suzuki, C. Tao, P. Vu, S. Tang, P. Zhang, K. K. Murthi, L. N. Gentile, and J. H. Liu, J. Am. Chem. Soc., 116, 1599 (1994). 10- - Deacetylbaccatin III was purchased from Indena (Italy). Taxol was synthesized from 1. a) J.-N. Denis, A. E. Greene, D. Guenard, F. Gueritte-Voegelein, L. Mangatal, and P. Potier, J. Am. Chem. Soc., 110, 5917 (1988); b) R. A. Holton, Eur. Pat. Appl. EP 400,971 (1990); Chem. Abstr., 114, 164568q (1990); c) I. Ojima, I. Habus, M. Zhao, M. Zucco, Y. H. Park, C. M. Sun, and T. Brigand, Tetrahedron, 48, 6985 (1992); d) K. C. Nicolaou, Z. Yang, J.-J. Liu, H. Ueno, P. G. Nantermet, R. K. Guy, C. F. Claiborne, J. Renaud, E. A. Couladouros, K. Paulvannan, and E. J. Sorensen, Nature, 367, 630 (1994); e) K. C. Nicolaou, H. Ueno, J.-J. Liu, P. G. Nantermet, Z. Yang, J. Renaud, K. Paulvannan, and R. Chadha, J. Am. Chem. Soc, 117, 653 (1995); f) J. J. Masters, J. T. Link, L. B. Snyder, W. B. Young, and S. J. Danishefsky, Angew. Chem., Int. Ed. Engl., 34, 1723 (1995); 5). - D. G. I. Kingston, A. A. Molinero, and J. M. Rimoldi, Prog. Chem. Org. Nat. Prod., 61, 1 (1993). - Synthetic studies on oxetane ring formation: W. F. Berkowitz, and A. S. Amarasekara, *Tetrahedron*, **26**, 3663 8 (1985); L. Ettouati, A. Ahond, C. Poupat, and P. Potier, Tetrahedron, 47, 9823 (1991); K. C. Nicolaou, J. J. Liu, C.-K. Hwang, W.-M. Dai, and K. K. Guy, J. Chem. Soc., Chem. Commun., 1992, 1118; T. V. Magee, W. G. Bornmann, R. C. A. Isaccs, and S. J. Danishefsky, J. Org. Chem., 57, 3274 (1992); L. A. Paquette and R. C. Thompson, J. Org. Chem., 58, 4952 (1993); J. S. Yadav, R. Ravishankar, and S. Lakshman, Tetrahedron Lett., 35, - 3621 (1994); 5c); 6d); 6e). S.-H. Chen, V. Farina, J. Wei, B. H. Long, C. Fairchild, S. W. Mamber, J. F. Kadow, D. M. Vyas, and T. W. Doyle, Bioorg. Med. Chem. Lett., 4, 479 (1994); S.-H. Chen, S. H. Q. Gao, J. Golik, and V. Farina, J. Org. Chem., 59, 1475 (1994). - R. M. Burk and M. B. Roof, Tetrahedron Lett., 34, 395 10 - 11 Oxetane-opening reactions: G. Samaranayake, N. F. Magri, C. Jitrangsri, and D. G. I. Kingston, J. Org. Chem., **56**, 5114 (1991); S.-H. Chen, S. Huang, J. Wei, and V. Farina, Tetrahedron, **49**, 2805 (1993); 5c); 6e). E. Block, Org. React., **30**, 457 (1984). - 12 - J. Tsuji, I. Minami, and I. Shimizu, Synthesis, 1986, 623. 13 - M. S. Kharasch, G. Sosnovsky, and N. C. Yang, J. Am. 14 Chem. Soc., 81, 5819 (1959). - 15 Holton et al. reported that oxetane ring was formed by a similar closure of halo diol: see Ref. 5c).